ABSTRACT Atherosclerosis is a chronic inflammatory disease characterized by fatty plaque deposits on artery walls. Elevated plasma homocysteine (Hcy) levels are an independent risk factor for atherosclerosis. Research on the mechanism by which Hcy promotes atherosclerosis has gradually turned to epigenetic inheritance, but the correlation between Hcy and m6A (N6-methyladenosine) modification has not been reported. In this study, MeRIP-seq was performed on macrophages and Hcy-treated macrophages. GO and KEGG analyses were used to perform functional analysis of differentially methylated genes. qRT-PCR and western blot were taken to determine the expression of CD209, CD163L1, proinflammatory, and anti-inflammatory factors. Flow cytometry was used to detect the proportion of M2 macrophages. The results showed that after Hcy treatment, the overall m6A methylation of macrophages was down-regulated, and 856 differential methylation peaks were annotated to 781 genes. These included CD209 and CD163L1, whose m6A methylation was inhibited after treatment with Hcy. In addition, mRNA and protein expressions of CD209 and CD163L1 were also inhibited after Hcy treatment. Overexpression of CD209 or CD163L1 prevents the Hcy-induced decrease in the proportion of M2 macrophages. This article identified changes in the modification level of m6A in macrophages by Hcy and revealed the possible mechanism by which Hcy induces macrophage polarization.
Read full abstract