This paper provides a broad overview of the epidemiological and genetical aspects of common multifactorial diseases in man with focus on three well-studied ones, namely, coronary heart disease (CHD), essential hypertension (EHYT) and diabetes mellitus (DM). In contrast to mendelian diseases, for which a mutant gene either in the heterozygous or homozygous condition is generally sufficient to cause disease, for most multifactorial diseases, the concepts of genetic susceptibility' and risk factors' are more appropriate. For these diseases, genetic susceptibility is heterogeneous. The well-studied diseases such as CHD permit one to conceptualize the complex relationships between genotype and phenotype for chronic multifactorial diseases in general, namely that allelic variations in genes, through their products interacting with environmental factors, contribute to the quantitative variability of biological risk factor traits and thus ultimately to disease outcome. Two types of such allelic variations can be distinguished, namely those in genes whose mutant alleles have (i) small to moderate effects on the risk factor trait, are common in the population (polymorphic alleles) and therefore contribute substantially to the variability of biological risk factor traits and (ii) profound effects, are rare in the population and therefore contribute far less to the variability of biological risk factor traits. For all the three diseases considered in this review, a positive family history is a strong risk factor. CHD is one of the major contributors to mortality in most industrialized countries. Evidence from epidemiological studies, clinical correlations, genetic hyperlipidaemias etc., indicate that lipids play a key role in the pathogenesis of CHD. The known lipid-related risk factors include: high levels of low density lipoprotein cholesterol, low levels of high density lipoprotein cholesterol, high apoB levels (the major protein fraction of the low density lipoprotein particles) and elevated levels of Lp(a) lipoprotein. Among the risk factors which are not related to lipids are: high levels of homocysteine, low activity of paraoxonase and possibly also elevated plasma fibrinogen levels. In addition to the above, hypertension, diabetes and obesity (which themselves have genetic determinants) are important risk factors for CHD. Among the environmental risk factors are: high dietary fat intake, smoking, stress, lack of exercise etc. About 60% of the variability of the plasma cholesterol is genetic in origin. While a few genes have been identified whose mutant alleles have large effects on this trait (e.g., LDLR, familial defective apoB-100), variability in cholesterol levels among individuals in most families is influenced by allelic variation in many genes (polymorphisms) as well as environmental exposures. A proportion of this variation can be accounted for by two alleles of the apoE locus that increase (ε4) and decrease (ε2) cholesterol levels, respectively. A polymorphism at the apoB gene (XbaI) also has similar effects, but is probably not mediated through lipids. High density lipoprotein cholesterol levels are genetically influenced and are related to apoA1 and hepatic lipase (LIPC) gene functions. Mutations in the apoA1 gene are rare and there are data which suggest a role of allelic variation at or linked LIPC gene in high density lipoprotein cholesterol levels. Polymorphism at the apoA1--C3 loci is often associated with hypertriglyceridemia. The apo(a) gene which codes for Lp(a) is highly polymorphic, each allele determining a specific number of multiple tandem repeats of a unique coding sequence known as Kringle 4. The size of the gene correlates with the size of the Lp(a) protein. The smaller the size of the Lp(a) protein, the higher are the Lp(a) levels. (ABSTRACT TRUNCATED)
Read full abstract