As a synthetic rubber antioxidant, the environmental monitoring concentrations of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) have exceeded the risk threshold, attracting widespread attention. Although investigations into the harmful effects on zebrafish have commenced, a comprehensive exploration of its toxicological impacts and underlying molecular mechanisms remains to be conducted. By using zebrafish as a model, this study systematically evaluated 6-PPD-induced lipid metabolism disorders and inflammation response following environmental exposure. Bioinformatics analysis revealed that 6-PPD target genes enriched in the hepatitis B pathway, indicating potential hepatic toxicity via inflammatory pathways. Therefore, we hypothesize that 6-PPD could trigger hepatotoxicity through the crosstalk between lipid metabolism and inflammation. Further experiments substantiated this hypothesis by showing lipid accumulation in the liver following 6-PPD exposure, along with elevated triglyceride (TG) and total cholesterol (TC) levels, and imbalanced expression of lipid metabolism-related marker genes. Additionally, 6-PPD exposure induced the accumulation of reactive oxygen species (ROS) and inhibited the differentiation and maturation of immune cells, resulting in immune evasion. Most of these abnormalities were exacerbated in a dose-dependent manner with increasing concentrations of 6-PPD. The addition of the PPARγ pathway agonist puerarin (PUE) or NF-κB pathway inhibitor quinazoline (QNZ) to 6-PPD exposure group mitigated these toxic effects, validating our conjecture that lipid metabolism disorder and inflammatory responses may result from the regulation of the PPARγ/NF-κB pathway.
Read full abstract