Particulate matter less than 2.5 μm particle diameter (PM2.5) is the most significant environmental issue globally. PM2.5 is an integral component of air quality monitoring and management, human health, weather, climate, and epidemiological research. In this work, we investigate the seasonal variation in PM2.5 mass concentrations and the association between the sea-land breeze system and particulate matter in five coastal urban locations in India (Kolkata, Visakhapatnam, Chennai, Thiruvananthapuram, and Mumbai). The relative occurrence of high PM2.5 mass concentrations was the greatest during the winter season (December through February) while the relative occurrence of low PM2.5 mass concentrations was the greatest during the monsoon season (June through September). Amongst locations, Kolkata experiences the highest PM2.5 loading in winter while Thiruvananthapuram experiences the lowest PM2.5 loading in monsoon. Indo-Gangetic Plain (IGP) outflow onto the Bay of Bengal significantly impacts locations along the eastern coast of India with reduced impact from north (Kolkata) to south (Chennai). The sea-breeze component analysis revealed daily cycles of the sea-land breeze with varying magnitudes of the breeze between the different seasons. Overall, we found a negative association between the sea-land breeze magnitude and PM2.5 mass concentrations, implying that the weakened sea-land breeze may deteriorate air quality in coastal locations due to poor ventilation. The vertical profiles of aerosol extinction showed elevated aerosol layers within 1 km from the surface in almost all locations. The decreasing trend in the land-sea temperature contrast in coastal locations is expected to deteriorate air quality in coastal locations in the warming future. Nevertheless, critical analyses using ground-based remote sensing techniques are required for a better understanding the impact of sea-land breeze dynamics on air quality in coastal locations.
Read full abstract