We have designed a versatile reusable cooperative catalyst oxidation system, consisting of palladium nanoparticles and laccase with unprecedented reactivity. This biohybrid catalyst was synthesized by the stepwise immobilization of laccase as an enzyme and Pd as a nanometallic component into the same cavity of siliceous mesocellular foams (MCF). MCF and nanobiohybrid catalyst were characterized by BET, SAXS, SEM, EDX elemental mapping, ICP-OES, TEM, TGA, FT-IR, and XPS techniques and the stepwise immobilization of laccase enzyme and Pd onto MCF was evaluated through several compelling electrochemical studies. The present catalytic system exhibits high activity toward (i) aerobic oxidation of alcohols to the corresponding carbonyl compounds, (ii) aerobic oxidation of cyclohexanol and cyclohexanone to phenol and (iii) aerobic dehydrogenation of important N-heteocyclic compounds (tetrahydro quinazolines, quinazolonones, pyrazolines and 1,4-diydropyridines) in the presence of catalytic amount of hydroquinone (HQ) as mediator in phosphate buffer (0.1 M, pH 4.5, 4 mL)/THF (4%, 1 mL) as solvent under mild conditions. The immobilization of both oxygen-activating catalyst (laccase) and oxidizing catalyst (Pd) onto the same support makes the present catalyst system superior to other currently available heterogeneous palladium based catalytic aerobic oxidation systems.