In this work, the numerical simulation of acoustic pressure distribution in ultrasonic vibration-assisted compound casting of Al/Mg bimetal composites was conducted. Relevant experimental verification was also performed to understand the influence of ultrasonic vibration treatment (UVT) on the interfacial microstructures and mechanical properties of the Al/Mg bimetal composites. Results revealed that the acoustic pressure distributions in the AZ91D melt were related to the vibration frequencies. The effective cavitation area at the Al/Mg interface reached the maximum percentage of 95.6 %, with the ultrasonic frequency of 20 kHz. The experimental results found that the Al/Mg interface without UVT was composed of Al–Mg intermetallic compounds (IMCs, i.e., Al3Mg2 and Al12Mg17) layer and eutectic layer. The oxide film and gas gap were existed between the two layers. The Mg2Si particles were gathered at the IMCs layer. The interfacial grains were coarse and their growth was directional. With UVT, the effective cavitation was occurred at the Al/Mg interface. The oxide film was broken, and the gas gap was eliminated. The interfacial microstructures were significantly refined. Due to the accelerated elemental diffusion and solute transfer by UVT, a more homogeneous Al/Mg interface was obtained. The Mg2Si particles were refined and formed at the eutectic layer. The microhardness mismatch of the IMCs layer and eutectic layer was decreased by UVT. The shear strength of the Al/Mg bimetal composites with UVT was enhanced to 62.2 MPa, which increased by 62.8 %, compared with that without UVT.
Read full abstract