This paper presents the design and experimental evaluation of a silicon micro-machined resonant accelerometer featuring adjustable sensitivity. By integrating an electrostatic tuning module into the fundamental accelerometer structure, dynamic sensitivity adjustment becomes feasible, leveraging the softening effect of electrostatic negative stiffness to optimize range, noise, and bandwidth. Notably, the electrostatic tuning module integrates seamlessly with the core accelerometer structure, minimizing structural alterations. Through theoretical analysis and finite element simulation of the electrostatic negative stiffness principle, we have designed a novel accelerometer with adjustable sensitivity, which can enhance the sensitivity and reduces the bias-instability of the accelerometer with a relatively small adjustment voltage, without increasing structural complexity. The performance of the accelerometer was assessed through open-loop, closed-loop, and dynamic experiments, revealing that sensitivity increased from 843 Hz/g to 2611 Hz/g within a linear range of ±1 g when employing a sensitivity-enhancing bias voltage of 9 V. Moreover, the bias-instability is lowered down from 17.3 μg to 6.8 μg. This design offers a promising avenue for sensitivity tuning in MEMS resonant accelerometers.
Read full abstract