Linear and nonlinear waves are examined on the ion time scale in a spatially inhomogeneous plasma having electrons that follow product bi (r,q) distribution. It has been shown that the linear dispersion relation for product bi (r,q) distribution undergoes appreciable changes as opposed to the one for the Maxwellian electrons. It has been found that the drift wave frequency is highest for flat-topped distribution, whereas it is lowest for the spiky distribution. It has been found that the drift solitary wave with flat-topped distribution (i.e., r > 0) is one of a kind and exhibits peculiar characteristics. It has been shown that Maxwellian and kappa-like electrons cannot alter the nature of the electrostatic drift waves under consideration; however, the spiky electrons can. The results obtained here are general and can be applied to many regions of space plasmas where the satellite missions have reported the presence of electron distribution functions that show deviation from the Gaussian behavior.