Most studies on sprint performance have focused on kinematics and kinetics of the musculoskeletal system for adults, with little research on the central sensorimotor transmission and processes, especially for adolescent sprinters. This study aimed to determine whether differences in the integrity of the central auditory system and audiomotor transmissions between the elite and sub-elite adolescent sprinters may affect their performance in the 100 m time. Twenty-nine adolescent junior high school students, including elite national-class and sub-elite regional-class athletes, were assessed. Visual and auditory evoked potentials (VEP and AEP) as well as electroencephalography (EEG) and electromyography (EMG) were recorded and analyzed during a sprint start. The electrophysiological results clearly reveal differences in central auditory transmission between elite and sub-elite groups, and between sexes. There were significant differences between elite and sub-elite groups, and during a sprint start, the EEG activities for elite female and male athletes showed significant time-dependent differences in peak amplitudes following the three auditory cues (ready, set, and gunshot). These findings can provide coaches with a more comprehensive consideration for sports-specific selection based on the athletes' individual conditions, e.g., sensorimotor neuroplastic training for providing precise and efficient training methods to improve young sprinters' performance.
Read full abstract