The initial electron transfer (ET) processes in reaction centers (RCs) of Chloroflexus (Cfl.) aurantiacus were studied at 295K using femtosecond transient absorption (TA) difference spectroscopy. Particular attention was paid to the decay kinetics of the primary electron donor excited state (P*) and the formation/decay of the absorption band of the monomeric bacteriochlorophyll a anion (BA-) at ~ 1035nm, which reflects the dynamics of the charge-separated state P+BA-. It was found that in QA-depleted RCs containing native bacteriopheophytin a (BPheo) molecules at the HA and HB binding sites, the decay of P* to form the P+HA- state contains a fast (4 ps; relative amplitude 70%) and a slow (13 ps; relative amplitude 30%) kinetic components. The BA- absorption band at ~ 1035nm was detected only for the fast component. Based on global analysis of the TA data, the results are discussed in terms of the presence of two P* populations: in one, P* decays in 4 ps via a dominant two-step activationless P* → P+BA- → P+HA- ET with a contribution of 70% to the overall primary charge separation process, and in the other, P* decays in 13 ps via a one-step superexchange P* → P+HA- ET (contribution of 30%). Similar femtosecond TA measurements on QA-depleted-PheoA-modified RCs, in which the charge separation energetics was changed by replacing BPheo HA with plant pheophytin a, suggest the presence of a P* population where P+HA- formation can occur via a thermally activated two-step ET process.
Read full abstract