Herein, carbon dots (CDs) as biocompatible, fluorescent carbon-based nanomaterials were synthesized from papaya seed waste as renewable carbon sources for the first time via a facile acid pyrolysis method. The papaya seed-derived CDs showed blue fluorescence emission under UV light (365 nm) with a quantum yield of 2.74%, and contained oxygen-, and nitrogen- containing functional groups. Due to their surface functionality, the CDs have a great potential for using as fluorescence sensing probe in metal ion sensing application. The CD solution exhibited the most selective detection to Cu2+ as presented the highest fluorescence quenching with the limit of detection (LOD) of 5.16 μM. The CD-paper-based fluorescent sensor was also developed for practical application, and the RGB value was used to compare the sensitivity of CDs toward metal ions. The CD sensing film was also prepared for diethyl ether vapor sensing via optical electronic nose system. The principal component analysis (PCA) score plots revealed the total variance of 99.3%, indicating that the CDs can be used to discriminate different concentrations of diethyl ether/ethanol vapor mixtures. This work demonstrated that the papaya seed-derived CDs have a great attention to be alternative materials for developing sensing materials in both solution and film forms.
Read full abstract