Background The pattern of antimicrobial resistance (AMR) changes with timeand varies in countries and between hospitals within the same country.Physicians might thus benefit from information on regional resistance patterns of clinically significant bacterial isolates when deciding on the best empirical treatment.Numerous nosocomial infections are caused by multidrug-resistant (MDR) strains, notably methicillin-resistant Staphylococcus aureus (MRSA) strains, which are also linked to higher morbidity and death. Aim Evaluation of AMR profile in intensive care unit (ICU) patientsof multiple tertiary care centers across India. Methods This was a multicenter, retrospective studybased on electronic laboratory records of microbial isolates from clinical specimens from ICUs analyzed at microbiology laboratories of identified hospitals.Data of invasive sample records was collected from Microbiology labs of the identified hospitals within India and were aligned to WHO 5 Net standard reporting and as per Clinical & Laboratory Standards Institute (CLSI-2014) Guidelines for assessment. Data from 21556 samples were collectedretrospectively from December 2021 to January 2010. Antibiotic susceptibility testing was done by using both the Kirby Baur disk diffusion method and the automated method (using the Vitek 2 compact system) as per CLSI (2014) guidelines. Results Of 21,556 enrolled patients, the majority (54.12%) were males and adults (62.07%). The median age was 58 years. Of 815 gram-positive bacteria reports, the commonest were S. aureus (552, 67.73%), Coagulase-negative Staphylococci (107, 13.13%), and Enterococcus spp. (105, 12.88%). For Coagulase-negative Staphylococci-positive samples, resistance was to penicillin (79, 73.83%), and erythromycin (73, 68.22%); and for S. aureus was to ciprofloxacin (361, 65.4%), and erythromycin (315,57.07%). Enterococcus spp. showed maximum resistance to erythromycin (73, 69.52%), followed by ampicillin, ciprofloxacin (68,64.76% each). Of 4,183 gram-negative bacteria reports, the commonest were Klebsiella pneumoniae (1,531, 36.6%), Escherichia coli (1,269, 30.34%), and Acinetobacter spp. (589, 14.08%), Pseudomonas aeruginosa (438, 14.08%), other Klebsiella spp. (174, 4.16%) and Enterobacter spp. (161, 3.85%). K. pneumoniae showed resistance to ciprofloxacin (1,001, 65.38%). E. coli showed resistance to ampicillin (918, 72.34%), and ciprofloxacin (798,62.88%); and Acinetobacter spp. to ceftazidime (525, 89.13%), and ciprofloxacin (507, 86.08%), while P. aeruginosa showed resistance to imipenem (234, 53.42%). Enterobacter spp. showed resistance to cefotaxime (129, 80.12%). MRSAsamples showed resistance to phenoxymethylpenicillin (188, 35.54%) and benzylpenicillin (178, 33.46%). Conclusion Gram-negative bacteria were more common than gram-positive bacteria in causing antibiotic-resistant infections in ICU, with beta-lactams, fluoroquinolones, macrolides, and cephalosporins showing varied percentages of resistance. Fluoroquinolones, macrolides, and penicillin were noted to be highly resistant against gram-positive species. This indicates that evaluation based on MDR and antibiotic consumption patterns is imperative.