The aim of this study was to investigate the anti-hyperglycemic activity and mechanism of formononetin in alloxan-induced type 1 diabetic mice by determining its effect on some diabetes-related indices as described below. Body weight, fasting blood glucose, hepatic glycogen, serum insulin, and serum glucagon were determined by electronic scales, glucometer, and ELISA kits. Fas, Caspase-3, pancreatic and duodenal homeobox-1 , insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase and glucose-6-phosphatase mRNA, and proteins levels in liver tissue were detected by fluorogenic quantitative-polymerase chain reaction and Western blot assays. The results indicated that formononetin (5, 10, and 20 mg/kg; oral administration) reversed the alloxan-induced increase of some indices (fasting blood glucose level and Fas and Caspase-3 mRNA and proteins levels in pancreas tissue) and reduction of some indices (body weight gain, oral glucose tolerance, insulin activity, hepatic glycogen level, pancreatic and duodenal homeobox-1, insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase mRNA and protein levels in liver tissue). The glucagon level and glucose-6-phosphatase mRNA and protein levels in liver tissue were not affected by the drugs administration. In conclusion, formononetin exhibited anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice by inhibiting islet B cell apoptosis and promoting islet B cell regeneration, insulin secretion, hepatic glycogen synthesis, and hepatic glycolysis.