Since even subtle mucosal changes may be depicted using virtual endoscopy created by the three-dimensional reconstruction of MDCT images, we developed a novel diagnostic imaging system that integrates and displays virtual enteroscopy, curved planar reconstruction, and a virtual unfolded view, the width of which changes with increases/decreases in the inner luminal diameter. The system is also equipped with artificial intelligence that superimposes and displays depressed areas, generates an automatic small bowel centerline that connects fragmented small bowel regions, and performs electronic cleansing. We retrospectively evaluated the diagnostic performance of this system for small bowel lesions in Crohn's disease, which were divided into two groups: endoscopically-observable and endoscopically-unobservable. Lesion detection rates for stenoses, longitudinal ulcers with a cobblestone appearance, and scars were excellent in both groups. This system, when used in combination with endoscopy, shows slight mucosal changes in areas in which an endoscope cannot reach due to strictures, thereby extending the range of observation of the small bowel. This system is a useful diagnostic modality that has the capacity to assess mucosal healing and provide extraluminal information.
Read full abstract