Redox logic materials offer new avenues to modulate intracellular pathologic redox environment area-specifically, but the unambiguity of redox logic states and their unidirectional and repetitive switchability are challenging to realize. By merging a bistable diisophthalic phenazine dye ligand with CuII salt, a multistable coordination polymer (CP) was constructed, of which the dye-Cu anisotropic junction achieved the diode-like unidirectional electron transfer and logic state ratchet for the first time. Radical cationic CP maintained OFF status with low toxicity in healthy tissues, but was reduced to the neutral SERVO state by the overexpressed glutathione (GSH) in hypoxic tumors. After photoirradiation, the stabilized charge-separated ON status promoted photo-Fenton reaction for reactive oxygen species (ROS) signal transduction, and simultaneously recovered the initial state for catalytic signal amplification of ROS, furnishing intratumor redox photomodulation for therapy.