An implementation of stochastic resolution of identity to the CC2 (sRI-CC2) ground state energy followed by triplet excitation energy calculations is presented. A set of stochastic orbitals is introduced to further decouple the expensive 4-index electron repulsion integrals on the basis of RI approximation. A Laplace transformation of the orbital energy difference denominators into numerical summations is adopted to obtain a third-order overall scaling. We select a series of hydrogen dimer chains with nearly thousands of electrons, as well as some other molecules, for sRI-CC2 energies and test the accuracy and time consumption in comparison with those of RI-CC2. Our sRI-CC2 results reproduce a modest agreement with the RI-CC2 in Q-Chem program package and it allows a steep scaling reduction from O(N5) to O(N3). Besides, the unrestricted sRI-CC2 calculations also fit well with the restricted results. Thus, our sRI-CC2 implementation of ground state energy and triplet excitation energy provides a cost-efficient alternative approach, especially for some large-sized systems.