In addition to remote radio sounding of the ionosphere of Mars, the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft is also able to measure the in situ electron density from the excitation of local electron plasma oscillations. This paper presents an investigation of the electron density in the upper ionosphere of Mars based on the frequency of these oscillations. The advantage of this method is that electron densities can be measured at much higher altitudes than can be determined from remote radio soundings. Using this technique electron densities from 503 orbits have been analyzed over the period from 4 August 2005 to 31 July 2007 for altitudes ranging from about 275 to 1300 km. Although there is considerable variability from orbit to orbit, the median electron density at a given solar zenith angle (SZA) on the dayside of Mars decreases systematically with increasing altitude with a characteristic plasma scale height varying from about 80 to 145 km. At a fixed altitude, the electron density remains almost constant for SZAs less than about 80°. For SZAs greater than about 80° the electron density decreases rapidly with increasing SZA, approaching very low values on the nightside. Simulations performed using both magnetohydrodynamic and hybrid codes show that the nearly constant density at a given altitude is caused by the horizontal transport of plasma from the dayside toward the nightside due to interaction with the solar wind.
Read full abstract