Hydrogen peroxide (H2O2) as a low cost, safe and clean disinfection agent plays an important role in providing clean water for human society. Compared with complicated industrial anthraquinone process or direct catalytic synthesis from H2 and O2, the distributed production of H2O2 in a polymer electrolyte fuel cell system (PEFC) has numerous merits, including lower financial and energy cost, safer process, use of small-scale, easily deployable device.1,2 For these reasons, there is strong interest in developing electrocatalysts with high activity and selectivity for H2O2 production via the electrochemical reduction of molecular oxygen. Up until now, H2O2 electrocatalysts have been based on precious-metal amalgams, which are costly, scarce, and difficult to handle safely due to the use of Hg.2,3 Carbon-based electrocatalysts have been considered for H2O2 production,4-6 as have been metal-free and nitrogen-containing molecular catalysts known to be selective for two-electron reduction of O2 in various media.7-9 In this presentation, we will demonstrate a new catalyst based on a small organic molecule that enables electrochemical production of H2O2 in an aqueous acidic electrolyte (0.5 M H2SO4). When adsorbed onto glassy carbon this molecular catalyst shows a high onset potential of around 0.6 V vs. RHE, and a specific current density > 1.3 mA/cm2 ECA at 0 V vs. RHE in electrochemical cell test. Rotating ring-disk electrode (RRDE) studies indicate high selectivity for H2O2 production, with H2O2 yield over 80%, and current efficiency over 67%. The durability of this molecule has been evaluated in an electrochemical cell, as well as in a PEFC. Based on experimental data and density functional theory (DFT) calculations, a two electron oxygen reduction mechanism on this molecular catalyst will be proposed. References (1) Centi, G.; Perathoner, S.; Abate, S. In Modern Heterogeneous Oxidation Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: 2009, p 253. (2) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Nat. Mater. 2013, 12, 1137. (3) Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Nano Lett. 2014, 14, 1603. (4) Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Angew. Chem. Int. Ed. 2003, 42, 3653. (5) Yamanaka, I.; Onisawa, T.; Hashimoto, T.; Murayama, T. ChemSusChem 2011, 4, 494. (6) Fellinger, T.-P.; Hasché, F.; Strasser, P.; Antonietti, M. J. Am. Chem. Soc. 2012, 134, 4072. (7) Hatay, I.; Su, B.; Méndez, M. A.; Corminboeuf, C.; Khoury, T.; Gros, C. P.; Bourdillon, M.; Meyer, M.; Barbe, J.-M.; Ersoz, M.; Záliš, S.; Samec, Z.; Girault, H. H. J. Am. Chem. Soc. 2010, 132, 13733. (8) Wu, S.; Su, B. Chem. Eur. J. 2012, 18, 3169. (9) Savéant, J.-M. Chem. Rev. 2008, 108, 2348.
Read full abstract