Molecular properties are computed as responses to perturbations (energy derivatives) in coupled-cluster (CC)/many-body perturbation theory (MBPT) models. Here, the CC/MBPT energy derivative with respect to a general two-electron (2-e) perturbation is assembled from gradient theory for 2-e property evaluation, including the electron repulsion energy. The correlation energy (∆E) is shown to be the sum of response kinetic (∆T), electron–nuclear attraction (∆V), and electron repulsion (∆V ee ) energies. Thus, evaluation of total V ee for energy component analysis is simple: For total energy (E), total 1-e responses T and V, and nuclear–nuclear repulsion energy (V NN ), V ee = E − V NN − T − V is the true 2-e response value. Component energy analysis is illustrated in an assessment of steric repulsion in ethane’s rotational barrier. Earlier SCF-based results (Bader et al. in J Am Chem Soc 112:6530, 1990) are corroborated: The higher-energy eclipsed geometry is favored versus staggered in the two repulsion energies (V NN and V ee ), while decisively disfavored in electron–nuclear attraction energy (V). Our best quality calculations (CCSD/cc-pVQZ) attain practical Virial Theorem compliance (i.e., agreement among the kinetic energy, potential energy, and total energy representations) in assigning 2.70 ± 0.06 to the barrier height; −195.80 kcal/mol is assigned to the drop in “steric” repulsion upon going to the eclipsed geometry. Steric repulsion is not responsible for any fraction of the ~3 kcal/mol barrier.
Read full abstract