Abstract

Extensive configuration‐interaction calculations with double‐zeta plus polarization and near triple‐zeta plus polarization basis sets are used to analyze the Jahn–Teller (JT) effect in the methane radical cation. Energy component analysis shows that the Jahn–Teller effect leads to a decrease in the expectation value of the electron‐nuclear attraction energy, an increase in the expectation value of the interelectronic repulsion energy, and an increase in the internuclear repulsion energy. These observations are consistent with a contraction of the electron cloud. The dominant factor in the −0.0550 hartree Jahn–Teller distortion (Td→C2v) in CH+4 is the −0.5262 hartree change in the electron–nuclear attraction energy. The differences in all energy components are large in relation to the JT distortion. Interelectronic repulsion plays a dominant role in determining the relative energies of the possible JT distorted structures, but electron correlation effects are relatively unimportant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.