We proposed a surface acoustic wave (SAW) NH3 gas sensor based on nitrogen doped diamond like carbon (N-DLC) film. The N-DLC film, prepared using a microwave electron cyclotron resonance plasma chemical vapor deposition (ECR-PECVD) method, is highly porous and physically and chemically stable, and have active polar groups on its surface, which can selectively absorb polar NH3 gas molecules. These features of the film lead to the high sensitivity, low noise and excellent stability of the sensor. The sensor can achieve capabilities of in-situ monitoring NH3 in a concentration range from 100 ppb to 100 ppm with fast response (∼5 s) and recovery (∼29 s) at room temperature. The NH3 sensing mechanism is attributed to the decreased porosity of the N-DLC film caused by adsorbed NH3 molecules on its polar groups, which leads an increase of the elastic modulus of the film.
Read full abstract