MXenes have imposed a profound effect on materials science and nanotechnology fields after their discovery in 2011. Theoretical models have predicted more than 100 potential compositions of MXene whereas laboratory-scale synthesis reflects their success of over 40 distinct structures till date. The distinctive properties of MXenes have led to their use for a diverse range of applications, such as energy storage, environmental remediation, electronics, communications, gas and liquid separation and adsorption, biomedical fields, and optoelectronics. The increased interest of researchers in MXenes has led to a wide rise in research publications, showing their growing importance in different scientific domains. In 2024, MXenes had shown wide potential in various areas, including energy storage devices, electromagnetic interference shielding, nanocomposites, and hybrid materials. However, the variations in the choice of precursors, reactor design, cost, synthesis parameters pose several challenges in ensuring the production of high-quality MXenes. The applicability of MXenes continues to broaden as its compositions are continuously accelerating. This review aims is to provide a comprehensive overview of MXene history, its properties, challenges, latest trends, and different applications to highlight its potential and gather new audiences towards this family of two-dimensional materials.
Read full abstract