A fundamental requirement for photonic technologies is the ability to control the confinement and propagation of light. Widely used platforms include two-dimensional (2D) optical microcavities in which electromagnetic waves are confined in either metallic or distributed Bragg reflectors. Recently, transition metal dichalcogenides hosting tightly bound excitons with high optical quality have emerged as promising atomically thin mirrors. In this work, we propose and experimentally demonstrate a subwavelength 2D nanocavity using two atomically thin mirrors with degenerate resonances. Angle-resolved measurements show a flat band, which sets this system apart from conventional photonic cavities. We demonstrate how the excitonic nature of the mirrors enables the formation of chiral and tunable optical modes upon the application of an external magnetic field. Moreover, we show the electrical tunability of the confined mode. Our work demonstrates a mechanism for confining light with high-quality excitonic materials, opening perspectives for spin-photon interfaces, and chiral cavity electrodynamics.
Read full abstract