The cross-spectral density matrixes of electromagnetic Gaussian Schell-model sources that are completely unpolarized or completely polarized are derived. We find that both the completely unpolarized stochastic electromagnetic Gaussian Schell-model beam and the completely polarized stochastic electromagnetic Gaussian Schell-model beam will keep their spectral degree of polarization or become partially polarized under different constraint conditions during their propagation in free space or through turbulent atmosphere. We give necessary theoretical explanation to the physical phenomena. They are considered as coherence-induced polarization changes and spectral density-induced polarization changes.