Scenedesmus sp. is a species of the Scenedesmus genus within the phylum Chlorophyta, commonly found as a planktonic algal species in freshwater and known for its rapid growth rate. This study employs room-temperature, atmospheric-pressure plasma mutagenesis for the breeding of Scenedesmus sp., utilizing transcriptomic analysis to investigate the biosynthesis mechanism of triglycerides. Further analysis of differentially expressed genes in transcriptome by measuring the macroscopic biological indicators of mutant and original algal strains. The findings of the study suggest that the mutant strain's photosynthesis has been enhanced, leading to improved light energy utilization and CO2 fixation, thereby providing more carbon storage and energy for biomass and lipid production. The intensification of glycolysis and the TCA (tricarboxylic acid) cycle results in a greater shift in carbon flux towards lipid accumulation. An elevated expression level of related enzymes in starch and protein degradation pathways may enhance acetyl CoA accumulation, facilitating a larger substrate supply for fatty acid production and thereby increasing lipid yield.
Read full abstract