A mathematical model has been developed to analyze transient fluid flow and inclusions transport in a slab continuous casting mold, considering the effects of electromagnetic brake (EMBr) arrangement and magnetic field strength. Transient flow of molten steel in the mold is calculated by using the large eddy simulation. The electromagnetic force is incorporated into the Navier–Stokes equation. The transport of inclusion inside the mold is calculated using the Lagrangian approach based on the transient flow field. The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern and inclusion transport inside the mold exhibits satisfactory agreement with the corresponding measurements. With electromagnetic brake effect, the velocities around the braking region are significantly suppressed, and the recirculating flow in the lower part drops and tends to develop a plug-like flow. The EMBr arrangement has an insignificant effect on the overall removal fraction of inclusions, especially for larger inclusions. The inclusion removal rate for the flow-control mold (FCM arrangement) reduces instead compared with no EMBr, especially for smaller inclusions.
Read full abstract