Emotion is an intricate cognitive state that, when identified, can serve as a crucial component of the brain-computer interface. This study examines the identification of two categories of positive and negative emotions through the development and implementation of a dry electrode electroencephalogram (EEG). To achieve this objective, a dry EEG electrode is created using the silver-copper sintering technique, which is assessed through Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Analysis (EDXA) evaluations. Subsequently, a database is generated utilizing the designated electrode, which is based on the musical stimulus. The collected data are fed into an improved deep network for automatic feature selection/extraction and classification. The deep network architecture is structured by combining type 2 fuzzy sets (FT2) and deep convolutional graph networks. The fabricated electrode demonstrated superior performance, efficiency, and affordability compared to other electrodes (both wet and dry) in this study. Furthermore, the dry EEG electrode was examined in noisy environments and demonstrated robust resistance across a diverse range of Signal-To-Noise ratios (SNRs). Furthermore, the proposed model achieved a classification accuracy of 99% for distinguishing between positive and negative emotions, an improvement of approximately 2% over previous studies. The manufactured dry EEG electrode is very economical and cost-effective in terms of manufacturing costs when compared to recent studies. The proposed deep network, combined with the fabricated dry EEG electrode, can be used in real-time applications for long-term recordings that do not require gel.
Read full abstract