Abstract
We aimed to investigate the effect of dual-task interference between cognitive and obstacle avoidance walking tasks, and the effect of transcranial direct current stimulation (tDCS) on the performance of this cognitive-motor dual task. The healthy young subjects participated in a single task consisting of a three-digit subtraction task (e.g. 783 - 7) or a 15-m track with six 7.5-cm high obstacles. Then, the subjects performed two single tasks simultaneously as dual tasks, before and after sham and anodal tDCS (2 mA, 20 min) to left dorsolateral prefrontal cortex (DLPFC, the F3 region of the 10/20 electroencephalogram electrode placement system). The effect of tDCS on each outcome (number of correct answers, the clearance height above the obstacle, and foot placement position) was analyzed using repeated-measures analysis of variance. Model effects included tDCS (real, sham), time (pre-, post-tDCS), and task (single task, dual task) conditions. A significant difference in the tDCS, time, and task conditions was observed; the correct number of subtraction tasks increased, and the clearance height and the distance between the obstacle and foot decreased in front of the obstacle. Our findings suggest that dual task performance is causally related to left DLPFC activation under complicated walking tasks and tDCS over this cortical area increases overloaded its information processing capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.