Abstract

Dual task assessments, which simultaneously challenge and assess cognitive and motor performance, have been used to improve the assessment of athletes with sports-related concussions (SRC). Our lab created a Dual Task Screen (DTS) to evaluate athletes with SRCs, and we have established that it is a valid behavioral measure, as it consistently elicits poorer behavioral performance under dual, compared to single, task conditions. Here, we used a Neuroimaging-Compatible (NC) version of the DTS, named the NC-DTS, which uses portable functional near-infrared spectroscopy (fNIRS) to assess behavioral performance and neural recruitment during single and dual tasks. Our study objective was to evaluate healthy athletes and establish whether the NC-DTS is a valid dual task neurological assessment that can elicit different patterns of neural recruitment during dual versus single task conditions. Twenty-five healthy collegiate athletes completed the NC-DTS in a single laboratory visit. The NC-DTS includes a lower and upper extremity subtask; both include single motor, single cognitive, and dual task conditions. The NC-DTS was administered in a block design, where conditions (i.e., single motor, single cognitive, and dual task) were repeated five times to generate average behavioral performance and task-dependent neural recruitment in superficial cortical regions including: prefrontal cortex, bilateral primary motor and sensory cortices, and posterior parietal cortex. Neural recruitment was measured with fNIRS and quantified using oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) metrics. A single-tailed, within subject t-test was used to compare average dual task behavioral performance to average single task behavioral performance. Pairwise comparisons, that were family-wise-error (FWE) corrected, were used to compare localized neural recruitment during dual versus single task conditions. As observed in previous studies, the NC-DTS elicited significantly poorer behavioral performance under dual, compared to single, task conditions. Additionally, dual task conditions of the NC-DTS elicited significantly greater neural recruitment in regions of the brain associated with attention allocation and task-specific demands in three of four comparisons. These preliminary results suggest that the NC-DTS is a valid dual task neurological assessment which warrants future work using the NC-DTS to evaluate athletes with SRCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call