The undisturbed ambient total electron content of the ionosphere in the equatorial region exhibits two characteristic features: 1. (i) a longitudinal behavior of the post-sunset variation of the ionization near the crests of the equatorial anomaly 2. (ii) an enhancement at lower latitudes following the post-sunset decay. During high solar activity periods the southern crest of the equatorial anomaly in the African longitude sector is characterized by a post-sunset maximum often exceeding the afternoon maximum. In the Indian and other longitude zones, the post-sunset peak is not so prominent. Instead, a ledge is obtained in the corresponding local time period. At lower magnetic latitudes, the ionization decays very rapidly around sunset, but an enhancement lasting 2–4 h is observed afterwards. Numerical solution of the plasma continuity equation, including the effects of ionization production by solar ultraviolet radiation, loss through charge exchange and transport by diffusion, electrodynamic drift and neutral wind, has been used to investigate the above two features. It is found that the pre-reversal peak of the E × B drift at the magnetic equator around sunset is the dominant mechanism responsible for the post-sunset behavior near the crests of the equatorial anomaly. The zonal wind causes an asymmetry of the total content in the northern and southern hemispheres. In African longitudes, where the magnetic declination is about 20°W, the southern crest is more developed at the expense of the northern counterpart. The north-south asymmetry is practically absent in the Asian sector, with its low (< 5°) declination angle. In the Pacific area, an easterly declination (about 9°E) results in a higher post-sunset ionization at the northern crest, although the asymmetry is less pronounced than that in the African zone. The night-time enhancement at lower latitudes has been found to be controlled by the post-sunset increase in the vertical drift, possibly also modulated by the neutral wind.