Mechanized arc welding in protective gases with short circuits (s.c.) is performed at moderate values of the welding current (up to 180 ... 220 A) and at the relatively low voltage (18 ... 24 V) on the arc. The main disadvantage of the process is spattering when melting an electrode metal and when transferring it to a weld bath. The elimination of disadvantages is possible through the implementation of a controlled transfer of molten electrode metal to a welding bath - due to the pulsed nature of arc burning. At pulse-arc welding (PAW), one of the main methods of increasing the efficiency of the process is to limit the maximum value of the short-circuit current Imax s.c. by increasing the inductive resistance L in the arc-welding circuit. Proceeding from the features of mechanized arc welding, the purpose of the research is to specify the influence of the velocity of the growth of the welding current vс during the s.c. on the arc stability. The implementation of experimental work presupposes surfacing on a plate with the programming of the operating mode of the inverter at different values (9, 12, 15, 18, 21, 24, 27, 30) with the frequency f = 25 Hz and a pulse ratio C = 2. While analyzing oscillograms of welding current and processing their records, it was established that a decrease of the velocity of the welding current growth leads to a significant limitation of the maximum value of the short-circuit current. The statistical processing of the momentary values of the welding current shows that the increase in the velocity of current growth vс starting with vс = 1.23 kA / s to vс = 50 kA / s makes the average short-circuit duration 10 times shorter. At the same time, the average frequency of short circuits grows more than twice. The increase of vс leads to the destabilization of the pulse process and this is reflected in the 30-times increase of the average frequency of arc break. The increase of the energy indexes of the PAW to the Iav. = 220 ... 225 A, Uav. = 24.5 ... 25.9 V, Q ≈ 7.9 ... 8.0 kJ / cm led to the changes in the parameters which characterize the process of pulsed welding with short circuits. There is a sharp decrease in the average frequency of short circuits (2 ... 3 times as rarely) and the average duration of s.c. (twice shorter).