Transcutaneous spinal direct current stimulation (TSDCS) has the potential to modulate spinal circuits and induce functional changes in humans. Nevertheless, differences across studies on basic parameters used and obtained metrics represent a confounding factor. Computer simulations are instrumental in improving the application of the TSDCS technique. Their findings allow a better interpretation of the tissue conductivities heterogeneity. Emerging findings indicate the electric field is maximal in the segments located between the electrodes and that factors such as the depth of the targeted area, and location of the electrodes on low conductive points, such as the spinous processes, may impact the electric field generated in the spinal cord, with consequences for thoracic versus lumbar or cervical applications. Recently, growing attention has been directed toward the importance of the TSDCS reference electrode's position and its influence on the current field properties at the targeted site. This review highlights the influence of dosage, polarity, and electrode position on the variety of TSDCS results in healthy and some clinical populations. Based on the available evidence, we suggest that although the current dosage appears to have a negligible effect, the variety of electrode montages and configurations of TSDCS can significantly impact the electric field distributions and potentially explain the conflicting results of experimental studies. Future human trials should systematically and thoughtfully evaluate the location of TSDCS electrodes based on the targeted neural structures.
Read full abstract