Nanocellulose is sustainable, has excellent properties and a unique structure that can be used to create environmentally friendly supercapacitor electrodes with pore structures. Supercapacitor, as a high-performance electrochemical energy storage device, has the advantages of high power density, long cycle life, fast charging and discharging, and high energy density. Currently, the problem of energy depletion is becoming more and more serious, and in order to solve this problem, people are beginning to replace traditional petroleum-based materials with environmentally friendly biomass-based materials. Nanocellulose, as a derivative of cellulose, the most widely distributed biomass in nature, has high specific surface area, biodegradability, high strength and good dispersibility. This review discusses and summarizes the latest research on nanocellulose-based supercapacitor electrode materials. First, the physical and chemical properties of nanocellulose and the preparation strategy are presented. Second, the types of electrodes are introduced in terms of electrodes with nanocellulose as substrate and those with other support materials. Next, recent studies on the use of these electrodes for flat supercapacitors and fiber-based supercapacitors are presented. Finally, the future prospects and challenges of using nanocellulose in supercapacitor electrode materials are outlined.