Metal-organic frameworks (MOFs) exhibit promising electrochromic (EC) performance owing to their porous structure, regular channel, and tunable component characteristics. However, few reports focus on MOF materials with the EC performance of a transparent to brown-black (neutral colored state) change that is more suitable for smart windows. In this work, we proposed a strategy for synthesizing MOF (named Ni-BPY) EC materials and corresponding films fabricated via a low-cost electrostatic spray deposition technique. The obtained film exhibits excellent EC performance with a neutral color change from transparent to brown-black, a large optical modulation of 70% at 430 nm, and a fast response within 10 s. Benefiting from good electrical and chemical stability, the Ni-BPY film can be cycled over 500 times. Notably, the Ni-BPY MOF film also delivers a stepwise-controlled process during the bleached state due to its porous characteristics. In addition, the unique color variation of the Ni-BPY film derives from the redox reaction of the Ni metal node between Ni2+ and Ni3+, which is verified by the in situ potential-dependent Raman and X-ray photoelectron spectroscopy (XPS) measurement. As a proof of application, the patterned Ni-BPY EC films and devices are additionally constructed to demonstrate their potential application in electronic tags and logo displays.