A novel polyhedral oligomeric siloxane (POSS)-based zwitterionic monolithic capillary column was prepared via one-pot polymerization in ionic liquid porogen, using N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine (DMMSA) and methacrylic ethyl trimethylammonium chloride (META) as binary functional monomers, and methacryl substituted POSS as cross-linker. The pore structure, permeability and homogeneity were well tuned by optimizing the polymerization conditions. The resultant monolith was characterized by scanning electron microscopy, nitrogen adsorption/desorption isotherm and Fourier transform infrared spectroscopy. The incorporation of zwitterionic ligand (DMMSA), quaternary amine group (META) and rigid POSS skeleton endows the hybrid organic-silica monolith with high hydrophilicity, electrostatic interaction and good mechanical stability, as well as a tunable electroosmotic flow over wide pH range. A close investigation of capillary electrochromatographic separations of different types of polar compounds such as bases, nucleosides and benzoic acids on such stationary phase exhibited a retention independent column efficiency up to 118,000 plates/m (thiourea), as well as a mixed-mode hydrophilic interaction chromatography (HILIC) retention mechanism including weak electrostatic interaction, hydrophobic interaction and anion exchange.
Read full abstract