The design and synthesis of high-efficiency electrochemiluminescence (ECL) emitters hold great promise for a wide range of analytical applications. In this study, we developed a rapid and straightforward strategy to fabricate a self-luminous Cd-based metal-organic framework (Cd-MOF) using individual aggregation-induced emission ligands, specifically 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE), within a few seconds. The rigid and directionally enriched metal node of Cd, along with the organic ligands, is formed within the Cd-MOF via coordination, effectively constraining the intramolecular free motions of TPPE and suppressing nonradiative relaxation. Additionally, the unique porous structure combined with the catalytic activity resulting from the incorporation of Cd2+, endow the Cd-MOF with 90-fold ECL enhancement compared to individual TPPE as more chromophores are electro-excited and more coreactants are catalyzed to produce luminescence. The as-made Cd-MOF amplifies the ECL performance by integrating ECL emitters and coreactant accelerators into a single entity, simplifying the sensing process. Leveraging the excellent ECL performance, we constructed a sensitive ECL sensor for hydroquinone based on competitive reactions, with a wide linear range from 200 nM to 1 mM and a satisfying detection limit as low as 80 nM.
Read full abstract