Abstract Engineered Ionic Polymer Metal Composites (eIPMCs) represent the next generation of IPMCs, soft electro-chemo-mechanically coupled smart materials used as actuators and sensors. Recent studies indicate that eIPMC sensors, featuring unique microstructures at the interface between the ionic polymer membrane and the electrode, exhibit enhanced electrochemical behavior and sensitivity under compression, as compared to traditional IPMCs. However, a complete and experimentally-validated model of how eIPMCs behave under dynamic compression loads is currently missing. In this paper, we develop an analytical model for eIPMC sensors, elucidating the role of the engineered interface, modeled as a separate material layer with unique mechanical and electrochemical properties. Theoretical predictions focus on the mechanical-to-electrochemical transduction response under dynamic compressive loads. Experimental verification is conducted on conventional IPMC and novel eIPMC samples fabricated using the polymer abrading technique. Electrochemical impedance spectroscopy is performed to study the effect of the engineered interface on the electrochemical properties. Open-circuit voltage and short-circuit current are measured under external compressive loads in different loading scenarios to demonstrate sensing performance. Results show good qualitative agreement between experimental trends and model predictions. Experiments over the frequency range 1-18 Hz demonstrate an increase of 220-290% in open-circuit voltage and 17-166% in short-circuit current sensitivity for eIPMCs over IPMCs.
Read full abstract