Developing immunosensing platforms capable of simultaneously detecting multiple cancer markers is crucial for clinical diagnosis and biomedical research. Here, we introduce a novel dual-mode electrochemical biosensing assay platform capable of detecting two gastric cancer biomarkers: pepsinogen I (PG I) and pepsinogen II (PG II). Methylene blue (MB) and Prussian blue (PB) were used as dual signal sources to label PG I and PG II, respectively. The platform integrates an ARM STM32F411 microcontroller and an AD5941 analog front-end, which not only facilitates cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with efficacy comparable to commercial electrochemical workstations but also offers data collection and synchronous analysis capabilities, allowing simultaneous output of PG I and PGR (PG I/PG II) values. Equipped with an interactive screen for operational control and result display, the immunosensing platform provides linear detection ranges for PG I (5 pg/mL–100 ng/mL) and PG II (50 pg/mL–200 ng/mL), enabling rapid detection within 5 min. It demonstrates excellent sensitivity and selectivity when comparing serum samples from healthy individuals and gastric cancer patients. The dual-marker detection platform significantly enhances early diagnosis and screening of gastric cancer, offering substantial improvements over single-marker assays. Furthermore, this platform shows potential for detecting multiple biomarkers in various diseases, highlighting its utility for biomedical applications.
Read full abstract