A new approach to the dynamic polarimetric method is proposed, which allows for the decoupling of electro-optical Kerr effect measurements from the electro-absorption effect in partially transparent liquids. The method is illustrated by using the results of engine oil measurements as a function of temperature and modulating field frequency. It was shown that the birefringence induced in the sample, the modulation of the ordinary wave transmission, and the modulation of the extraordinary wave transmission in the sample can be shifted in phase with respect to the square of the applied alternating modulating field. Each of these three phase shifts can depend differently on the temperature and frequency. Neglecting the influence of electro-absorption on electro-optical measurements in liquids or considering electro-absorption as an effect correlated in phase with induced birefringence may lead to significant measurement errors. This indicates that the Kerr constant and the electro-absorption coefficients for an alternating electric field should be considered as complex quantities instead of real values, as they have been traditionally. The proposed approach fills an important gap in measurement techniques described in the literature, which may provide erroneous results for measurements of the Kerr constant in partially transparent liquids including many industrially important liquids.
Read full abstract