Altering the physical structure and chemical property of copper, i.e., particle size, surface morphology, composition or crystal facet, has been demonstrated to be effective in steering the selectivity of products in electrochemical reduction of carbon dioxide. However, these modifications generally result in the change of active surface area, leading to differences in the geometric current density and local pH, which are also demonstrated to be the key factors for observed selectivity change. In this work, we deconvolute the effect of mass transport and local pH from the effect of crystal facet by investigating five copper-based catalysts with identical roughness factors for electrochemical reduction of carbon dioxide in an H-cell. Interestingly, CuO-derived catalyst stands out as the best catalyst for C-C coupling. At -1.07 V vs. RHE, the faradaic efficiency of C2+ product reaches 44.3%, with a partial current density of -10.8 mA cm-2. Electrochemical adsorption of *OH reveals that the C2+ product selectivity of derived-copper catalysts correlates positively with the ratio of Cu(100)/Cu(110) of five catalysts. Additionally, in situ Raman spectroscopy reveals that the percentage of low-frequency band linear CO (LFB-CO), which is attributed to the adsorbed *CO on Cu(100) facet, increases with the C-C coupling efficiency.
Read full abstract