Electro-osmotic flow is the motion of fluid driven by an applied electric field, for which an electric double layer near a charged surface is deemed essential. Here, we find that electro-osmotic flow can occur in electrically neutral nanochannels in the absence of definable electric double layers through extensive molecular dynamics simulations. An applied electric field is shown to cause an intrinsic channel selectivity between cations and anions, by reorienting the hydration shells of these confined ions. The ion selectivity then results in a net charge density in the channel that induces the unconventional electro-osmotic flow. The flow direction is amenable to manipulation by the field strength and the channel size, which will inform ongoing efforts to develop highly integrated nanofluidic systems capable of complex flow control.
Read full abstract