We propose novel applications of the quadratic electro-optic Kerr effect to photonic devices. Specifically in this work, two new illustrative examples are described, namely an electrically controlled multistable switch (ECMS), and an electrically tunable Bragg grating (ETBG). Their functionality is based on the third-order nonlinearity in an isotropic medium. On one hand, we note that the first key feature is the all-optical as well as electro-optical control/tunability. This can be achieved only in the third-order nonlinear material as opposed to a more frequently used linear electro-optic effect exploited in optical crystals. On the other hand, the second important key feature is the availability of integrated and compatible materials that show third order nonlinearity. In the first application proposed here, ECMS, the interplay between the quadratic electro-optic and all-optical Kerr effects is crucial for its tunable operation and leads to an interesting feature of storing an electrical information optically. In the second example, ETBG, employing the quadratic electro-optic effect makes it attractive thanks to the existence of the third-order nonlinearity in many interesting isotropic materials that are suitable for device integration. Devices such as modulators, switches, mixers, variable attenuators or optical limiters can be designed.
Read full abstract