The use of regenerative braking by electric rolling stock on DC railways makes it possible to increase the energy efficiency of the transportation process. The effective use of regenerative braking is associated with creation of conditions for receiving energy obtained through it. For these purposes, rectifier-inverter converters and energy absorbing devices are currently used in the traction power supply system.A promising technology that provides an increase in theefficiency of the use of regenerative braking is energy storage, which allows this energy to be used in the future to cover the traction load curve. A feature of the use of regenerative braking on singletrack sections of DC railways with low traffic intensity is the need to use converters or energy absorbing devices. One of the options for increasing the efficiency of recuperation energy use is the adoption of energy storage systems for the own needs of traction substations. The use of this technical solution is advisable on single-track sections with intensive use of regenerative braking, the effectiveness of which is explained through a decrease in power consumption for own needs of the substation from the external grid.The international research allows us to identify the widespread trend towards the application of electricity storage technology in various fields: from renewable energy sources to electric power systems, including transport power supply systems. International practices demonstrate successful implementation of pilot projects of adoption of energy storage systems for solving problems of increasing the efficiency of electric urban and suburban transport, as well as of metro systems.The objective of the work is to assess the energy performance of energy storage systems when using recovered energy for own needs of a traction substation. The study is based on the methods of mathematical and simulation modelling, optimisation, and mathematical statistics.The discussed issues refer to the use of energy storage systems to provide power supply for own needs of DC traction substations. Main issues of operation of storage systems are considered with the help of a substation case study. The features of the recuperation load curve are described to explain the use of hybrid technologies for developing a storage system. The example of the considered traction substation helps to demonstrate the solution to the problem of determining main parameters of the storage system, considering the specifics of operation of electrochemical and electrical modules.