Electric water heaters represent 14% of the electricity consumption in residential buildings. An average household in the United States (U.S.) spends about USD 400–600 (0.45 ¢/L–0.68 ¢/L) on water heating every year. In this context, water heaters are often considered as a valuable asset for Demand Response (DR) and building energy management system (BEMS) applications. To this end, this study proposes a model-free deep reinforcement learning (RL) approach that aims to minimize the electricity cost of a water heater under a time-of-use (TOU) electricity pricing policy by only using standard DR commands. In this approach, a set of RL agents, with different look ahead periods, were trained using the deep Q-networks (DQN) algorithm and their performance was tested on an unseen pair of price and hot water usage profiles. The testing results showed that the RL agents can help save electricity cost in the range of 19% to 35% compared to the baseline operation without causing any discomfort to end users. Additionally, the RL agents outperformed rule-based and model predictive control (MPC)-based controllers and achieved comparable performance to optimization-based control.
Read full abstract