The present paper provides interesting measurements and methodologies to investigate the key factors controlling the electrical response of perovskite systems. The studied system was successfully prepared using a solid-state route. The chemical analysis and the X-ray diffraction results confirm the formation of the desired perovskite phase. As a result, the DC-resistivity analysis shows that the transport properties are governed by hopping mechanisms above the transition temperature. In this case, thermal agitation allows the charge-carriers to hop across the insulating barrier in the form of grain boundaries. Then, the dominance of the grain boundary contribution is proved. AC-resistivity spectra are investigated in terms of numerous power laws (UDR, SPL and NCL). Accordingly, the decrease in the resistivity values at high frequencies is explained through hopping and tunneling processes. Indeed, it is proved that the electrical transport phenomena are governed by QMT and CBH models. The coexistence of direct (C-C) and indirect (C-A-C) interactions explains the multi-behavior of the AC-resistivity. The scaling representation displays a single muster curve describing the universal dynamic response (UDR). Thus, it reveals the universality of the electrical resistivity of the system. However, the double Schottky barrier model is used to explain the grain boundary effects. A critical frequency "νc" is detected under temperature and DC-bias voltage effects. These observations disclose, in a different way, the separate contributions of the electro-active regions of the sample in the conduction phenomenon.
Read full abstract