With the continuous development and progress of nanotechnology, its biosensors have been widely used in biomedical experimental teaching, and good experimental results have been achieved. Graphene, as a new nanomaterial with large surface area, good thermal conductivity, and unique electrical conductivity, has unique advantages in the field of biosensor preparation. Based on this, this paper will prepare the electrochemical sensor applied to biomedical experimental teaching based on graphene, optimize the detection sensitivity and detection range of graphene electrochemical sensor based on the corresponding experimental conditions, and improve its corresponding stability and reusability. At the level of electrochemical activity of biosensors, this paper innovatively uses the electric AC impedance method to detect the electrochemical activity, so as to accurately evaluate the key characteristics of biosensors. Based on the preparation of biosensors and the results of biological experiments, this paper will design a network-based biomedical experiment teaching effect evaluation system, and realize the basic functions of teacher-student interaction, teaching effect evaluation, sensor performance evaluation and so on. Based on the above, the electrochemical sensor based on graphene and a conductive polymer solution is actually prepared in this paper. At the same time, the electrocatalysis experiment is carried out based on the sensor, and the experimental teaching effect is systematically evaluated. The experimental results show that the sensitivity of the biosensor proposed in this paper is increased by about 10% compared with the traditional biosensor, the corresponding preparation complexity is reduced by nearly 1/3, and the corresponding reusability is increased by 30%. Therefore, the biomedical experiment teaching effect evaluation system proposed in this paper has good evaluation effect. It can provide accurate reference for the evaluation of biological experiment teaching effect, so it has important value and significance.
Read full abstract