In this study, polyvinyl alcohol (PVA) polymer and Cloisite 15A, a modified form of organo Montmorillonite nanoclay, are used to produce nanofibrous mats via electrospinning technique. Pure PVA nanofibrous mats from mechanically stirred polymeric solutions at 8, 10 and 12 wt % PVA percents; and nanoclay added PVA nanofibrous mat samples are produced at increased nanoclay weight/ polymer weight ratios (1/13, 1/11, 1/9 and 1/6) using several mechanically stirred nanoclay-PVA solutions at various proportions of nanoclay and PVA polymer wt % in solutions. The viscosities, surface tensions and electrical conductivities of solutions were measured. FESEM (Field Emission Scanning Electron Microscopy) analysis, fiber diameter distribution with Image J software analysis and tensile testing was applied to nanofibrous samples. Increased polymer concentration led to bead-free nanofibrous PVA mats. EDX analysis approved nanoclay is present in samples produced from nanoclay added PVA solutions. Mechanical stirring for nanoclay dispersion enabled smooth nanofibrous structures only in low (1/13) nanoclay weight/ polymer weight ratios and showed very little tensile increase from 1 wt % clay loading to 2 wt % addition. A direct increase in tensile strength wasnât achieved with nanoclay content increase in PVA nanofibrous mats; this might be due to the effect of poor nanoclay distribution adversely affecting tensile results. Morphological analysis proved that nanofibrous structures were far away from smooth fiber structures as they transformed from smooth nanofibers into non-uniform fibrous structures at increased nanoclay weight/ polymer weight ratios in nanoclay added PVA samples. Keywords: nanofibrous mat, electrospinning, polyvinyl alcohol (PVA), nanoclay, mechanical dispersion DOI : 10.7176/CPER/62-08 Publication date: May 30 th 2020
Read full abstract