Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.
Read full abstract