Background: Prostate cancer is a leading cause of cancer-related deaths in men worldwide, making accurate diagnosis critical for effective treatment. Recent advancements in artificial intelligence (AI) and machine learning (ML) have shown promise in improving the diagnostic accuracy of prostate cancer. Objectives: This systematic review aims to evaluate the effectiveness of AI-based tools in diagnosing prostate cancer using MRI, with a focus on accuracy, specificity, sensitivity, and clinical utility compared to conventional diagnostic methods. Methods: A comprehensive search was conducted across PubMed, Embase, Ovid MEDLINE, Web of Science, Cochrane Library, and Institute of Electrical and Electronics Engineers (IEEE) Xplore for studies published between 2019 and 2024. Inclusion criteria focused on full-text, English-language studies involving AI for Magnetic Resonance Imaging (MRI) -based prostate cancer diagnosis. Diagnostic performance metrics such as area under curve (AUC), sensitivity, and specificity were analyzed, with risk of bias assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Results: Seven studies met the inclusion criteria, employing various AI techniques, including deep learning and machine learning. These studies reported improved diagnostic accuracy (with AUC scores of up to 97%) and moderate sensitivity, with performance varying based on training data quality and lesion characteristics like Prostate Imaging Reporting and Data System (PI-RADS) scores. Conclusions: AI has significant potential to enhance prostate cancer diagnosis, particularly when used for second opinions in MRI interpretations. While these results are promising, further validation in diverse populations and clinical settings is necessary to fully integrate AI into standard practice.
Read full abstract