Examining the impact of electromagnetic field, which provides thrust in contemporary rocket engines, is turning into a significant issue. Its resolution is required to guarantee the safety of space flight by enhancing engine performance and lowering fuel consumption. Spacecraft propulsion is achieved by low-thrust rocket engines. The principle of operation for ion colloid engines is the electrostatic acceleration of charged droplets. A static electric field accelerates charged liquid droplets created by electrospraying them in a low-thrust colloid engine. A promising technology in many industries is the active control of droplet motion and deformation with electric field. An electromagnetic field impact on droplet deformation and destruction in a viscous liquid is examined. The effect of electromagnetic field on individual droplets and emulsions is examined in terms of their physical mechanisms. Constant and alternating electric field effects on liquid droplet are represented numerically. The effects of droplet electric capillary number and viscosity ratio on droplet unsteady deformations is explored. The parameters that correspond to the droplet destruction are found. The results obtained have potential applications in enhancing the efficiency of current industrial electric dehydrators and in advancing the development of new electromagnetic field-based demulsification technologies.
Read full abstract